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Abstract Standard approaches to the study of information diffusion draw on analo-
gies to the transmission of diseases or computer viruses, and find that adding more
random ties to a network increases the speed of information propagation through it.
However, a person sharing information in a social network differs from a computer
transmitting a virus in two important respects: a person may not have the opportunity
to pass the information to every tie, and may be unwilling to pass the information to
certain ties even when presented with the opportunity. Accounting for these two fea-
tures reveals that, while additional random ties allow information to jump to distant
regions of a network, they also change the composition of network neighborhoods.
When the latter increases the proportion of neighbors to whom people are less will-
ing to pass information, the result can be a net decrease in diffusion. I show that
this is the case in heterogeneous, homophilous networks: the addition of random
ties strictly impedes information dissemination, and the impediment is increasing in
both original homophily and the number of new ties.

1 Introduction

The study of information diffusion in social systems applies insights from epidemi-
ology to the spread of ideas, innovations, or behavior from node to node in a social
network [24, 20, 11, 23, 26, 1]. The basic logic holds that nodes “infected” with
an idea or behavior are “contagious”; network neighbors of the infected are ex-
posed and hence susceptible to the infection, with variants accounting for the con-
sequences of exposure to multiple sources [4, 5], variation in motivation [10, 7],
the cumulative effect of repeated exposures [8, 9], and homophily with respect to
susceptibility [6].
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The analogy to disease spread has generated important findings about the rela-
tionship between network structure and information diffusion. Increasing the pro-
portion of random ties in a regular network dramatically increases the propagation
rate of cascades [19, 12], the presence of particularly well-connected nodes is ben-
eficial for diffusion [25, 21, 20, 16], and random rewiring in small world networks
accelerates diffusion [19, 12]. In general, adding random ties to a network will im-
prove diffusion.

While the epidemiological approach has offered valuable insights, ties in a social
network function quite differently for the spread of information than ties in a contact
network function for the spread of a disease. In the case of a contact network, a tie by
definition makes an alter susceptible to the disease of the ego. In the case of a social
network, a tie does not by definition spread information to an alter. A tie indicates a
social relationship. Whether or not this social relationship results in an ego passing
information to an alter depends on a variety of factors: whether the two happen to
encounter each other while the information is salient, whether they are together for
long enough for the information to come up, whether the ego thinks the information
is relevant to the alter, whether the ego is willing to share with the particular alter,
and so on.

In fact, for the type of information that is often the subject of diffusion studies, an
ego may have good reason to prefer to share it with some social ties over others. In
the case of collective action, the information may be a person’s dissatisfaction with
a regime or her willingness to participate in a protest [7, 5]. Given the sensitivity of
this information, especially in oppressive regimes, a person may only be willing to
pass it to her most trusted social ties. In the case of technology adoption, especially
in the developing world, relevant information may be news of a development orga-
nization offering startup loans or handing out new technology like fertilizer [2]. A
person may judge the opportunity to be finite or selectively beneficial and prefer to
share information of it with her social ties that are kin or members of her salient in-
group like her tribe [14]. In social networks, a person can choose whether to share
information or whether to withhold it on a tie-by-tie basis.

In this conceptualization of information diffusion, a person in a social network
will only spread information to a particular network neighbor if (1) she is presented
with an opportunity to do so, and (2) is willing to share the information with that
neighbor.

I account for these two features in a model in which a person has a finite number
of opportunities to spread information with network neighbors. Individuals in the
network have a type, which could represent ethnicity, tribe, political party, or any
other salient division correlated with willingness to share new information. Given
an opportunity, a person always shares information with a same-type neighbor but
occasionally withholds information from a different-type neighbor.

When only one type is present in the network, the results reproduce those of
earlier work: the addition of random ties allows information to jump to distant re-
gions of the network, increasing the speed of diffusion. When multiple types are
present, however, random ties introduce a second effect: they change the compo-
sition of network neighborhoods, possibly increasing the chances that the limited
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number of encounters will be with different-type neighbors. I show that in heteroge-
neous networks with type-homophily, the addition of random ties can result in the
second effect dominating. In heterogeneous networks, the addition of random ties
can strictly reduce the speed of information diffusion. The reduction is increasing
in the original homophily, the number of types in the network, and the number of
added ties.

Since homophilous communities within a network would facilitate information
spread, these results are consistent with others’ findings that network modularity
can improve information dissemination via social reinforcement [3, 18]. However,
the result here is even stronger: not only would rearranging links to reduce modular-
ity impede information spread, but adding new links to the network at random can
strictly impede information spread as well.

These findings refine those of earlier work, showing that the benefit of additional
random ties hinges on plentiful opportunities to share information with all network
neighbors and perfect willingness to share the information at every opportunity. In
the more realistic case of limited opportunities and differential willingness to share,
the addition of random ties may be counterproductive. In heterogeneous groups, the
greater the type-homophily, the more damaging random ties are to the wide reach
of information.

2 An Opportunity Model of Information Diffusion

Suppose a network g is comprised of a finite number of nodes that each have one
of n types τ ∈ {τ1, . . . ,τn}. A type is a descriptive feature of a node and is used to
separate an in-group from out-groups, like membership in a certain tribe or political
party. Call a network homogeneous if n = 1; that is, if all nodes have the same type.
A network is heterogeneous if n > 1.

Consider a simple model of information diffusion over time in which individuals
may pass along new information to some network neighbors when presented with
the opportunity. Call i’s neighbors in g Ni(g). In the model, an individual’s willing-
ness to share information depends on type: she is more willing to share information
with same-type nodes than with different-type nodes. Specifically, the diffusion pro-
cess proceeds as follows:

t = 0 One node i is randomly selected and endowed with information.
t = 1 Seed i randomly encounters x of her network neighbors, Ni(g). In each en-

counter, she passes information to the neighbor with probability psame if she
and the neighbor are both the same type, and probability pdi f < psame if they
are different types.

t = 2 All j who learned information in t = 1 randomly encounter x of their neigh-
bors, N j(g), passing information with probabilities psame and pdi f .

... Repeats for all who learned information in the previous period until the in-
formation has reached everyone in the network or the spread halts.
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2.1 Consequences of randomly added links

Randomly added or rewired ties have been found to improve information diffusion
in homogeneous networks because random ties allow information to “jump” to dis-
tant network locations [19, 12]. However, the diffusion process specified in section 2
introduces a second, potentially-competing effect in heterogeneous networks. Ran-
domly added ties can change the composition of nodes’ neighborhoods. If neigh-
borhoods are comprised of more ties to other-type nodes, the expected number of
neighbors who receive the information declines.

Dual Effects of Random Ties in Heterogeneous Networks

Jump effect: random ties allow information to jump across distant network
locations, improving information dissemination.

Composition effect: random ties change the composition of a node’s neigh-
borhood, potentially impeding information dissemination.

In a heterogeneous network, which effect dominates– the jump effect which im-
proves dissemination or the composition effect which hinders dissemination– de-
pends on the relationship between homophily and the distribution of types in the
network.

Node i’s network neighborhood Ni(g) can be decomposed into Nsame
i (g), the sub-

set of his network neighbors that are the same type as i, and Ndi f
i (g), the subset that

are different. The expected number of nodes who receive information from i can
then be written

x
#Ni(g)

(
#Nsame

i (g)psame +#Ndi f
i (g)pdi f

)
, (1)

where # indicates the cardinality of a set.
The consequences of an additional tie added at random will depend on the pro-

portion of the nodes in g that are the same type as i. Call qτk the proportion of nodes
in g that are type τk. For simplicity, from any node i’s perspective, call qsame

i the
proportion of nodes of i’s type in g. Now a random link added to Ni(g) will reduce
the value of (1) whenever

#Nsame
i (g)

#Ni(g)
−qsame

i > 0. (2)

That is, when the network is homophilous with respect to type so that a larger
proportion of a node’s neighbors are his same type relative to the frequency of his
type in the overall network, the addition of random ties will strictly reduce the ex-
pected number of people that that node informs.
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The extent to which the expected number of nodes who receive information from
i declines depends on the magnitude of the left hand side of (2). The greater the
type homophily, the bigger impact random ties will have on reducing the expected
number of people that a node informs.

When this relationship is prevalent enough throughout a network, network-wide
information dissemination can be strictly impeded by the addition of random ties.
The next section demonstrates the aggregate results using a simulated information
diffusion process.

3 Simulated Information Spread

In this section I simulate the information diffusion process from Section 2 on simple
networks generated with varying levels of homophily, heterogeneity, and random tie
additions.

3.1 The Downside to Density

I begin by generating four heterogeneous networks, each with two types of nodes.
The networks have 234 nodes, half of which are each type, and 864 links. Each
network is generated by randomly adding links according to a specified probabil-
ity of attaching to a same-type node. One network is generated for each same-
type node probability {.5, .65, .8, .95}. Let the difference between the proportion
of same-type links present and the proportion of same-type links that would be ob-
served by uniformly random link formation be called the network’s “homophily.”
With two groups of equal size, the expected proportion of random same-type links
is .5, yielding networks with homophily values {0, .15, .3, .45}.

I consider the consequences of increasing density for information diffusion by
randomly adding links to the network. For each value of homophily, I add links
such that the total number of links increases by a factor of 1, 2, 3, and 10.

Table 1 summarizes the interpretation of the model parameters and the values to
which they are set in the simulations reported below.

Figure 1 shows the results of the simulated information diffusion process on each
of these networks, grouped by homophily value. In each quadrant, the curves plot the
average proportion of the network that is informed by the timestep on the horizontal
axis over a set of 500 simulations for a particular value of density increase. Since
the population is finite, psame > 0, and pdi f > 0, diffusion follows the characteristic
s-shape. The lower the curve, the slower the diffusion.1

When the network exhibits no homophily (top left), randomly adding links can
improve information dissemination. In this case, since the composition of the pop-

1 This represents an impediment to diffusion in the sense that information reaches people more
slowly, and also in the sense that by any given point in time, fewer people are informed.
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Table 1 Model Parameters

Parameter Definition Set to

x Number of network neighbors a newly-informed node encoun-
ters in a period

2

psame Probability pass news to an encountered neighbor if neighbor
is same type

1

pdi f Probability pass news to an encountered neighbor if neighbor
is different type

.5

τ = {τ1, . . . ,τn} Set of types {τ1,τ2},
{τ1,τ2,τ3},
{τ1,τ2,τ3,τ4}

qτk Proportion of type τk ∈ τ = {τ1, . . . ,τn} present in the network 1/n
Homophily Proportion same-type ties in network minus proportion same-

type ties expected under random tie formation
{0, .15, .3, .45}

Diversity Number of types, or “groups”, present in the network {2,3,4}
Density Inc. Factor by which number of links is increased; e.g. 2 adds 200%

of original links as new links
{0,1,2,3,10}

ulation matches the composition of neighborhoods on average, randomly adding
links has no composition effect. The jump effect dominates, improving information
dissemination on net.

When network neighborhoods contain more same-type links than would be ex-
pected based on the overall network composition (exhibit positive homophily), the
composition effect is present alongside the jump effect. In the cases of positive ho-
mophily shown in Figure 1, the composition effect dominates: an increase in density
actually impedes information diffusion. The greater the number of links added, the
worse the diffusion.

Note that the number of randomly-added ties is large in these simulations, in
some cases increasing the number of links in the network many-fold. Under stan-
dard epidemiological models of information diffusion, the improvement in diffusion
would be vast. Here, these large additions actually reduce the spread of information.
Moreover, these simulations assume that individuals share with other-types half of
the time (pdi f = .5). When people are more hesitant to share with other types so that
pdi f is smaller, the reduction in information spread is even greater.

3.2 The Role of Diversity

Figure 2 holds the probability of same-type links constant and increases the number
of equal-sized groups in the network (the network’s “diversity”). The vertical bars
display the proportion of the network that has been informed on average by the tenth
timestep of the simulations for each network when it has ten times the number of
original links added at random minus this value for the original network. In other
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Fig. 1 Proportion of network informed by each timestep in simulated information spread on a net-
work with τ = {τ1,τ2}, and qτ1 = qτ2 = 1

2 . Simulation parameters set to x = 2, psame = 1, and
pdi f = .5. When homophily = 0, random ties will not change neighborhood compositions on aver-
age, so the jump effect dominants and increasing density strictly improves information diffusion.
At greater values of homophily, increasing density does change neighborhood compositions and
strictly impedes information diffusion.

words, this displays the gain or loss from increasing the density of each network
given a certain number of groups present in the network.

The cluster of bars on the left translates the information from Figure 1 in which
there are two groups present in the network. These show that when the probability
of sharing a link with a same-type is greater than .5, greater density reduces the
proportion of the network that has been informed by the tenth time step. The next
two sets of clusters show the same from the case where there are three and four
types of equal size present in the network, respectively. Comparing across clusters
shows that the impediment to diffusion is greater when diversity is higher.
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Fig. 2 Difference in propor-
tion of network informed by
timestep 10 when the density
is increased by a factor of 10
compared to the proportion
informed by timestep 10 given
the original density. Shown
for 2 groups (τ = {τ1,τ2}
with qτ1 = qτ2 = 1

2 ), 3 groups
(τ = {τ1,τ2,τ3} with qτ1 =
qτ2 = qτ3 = 1

3 ), and 4 groups
(τ = {τ1,τ2,τ3,τ4} with
qτ1 = qτ2 = qτ3 = qτ4 = 1

4 ).
Simulation parameters set
to x = 2, psame = 1, and
pdi f = .5. The downside
to greater density is more
pronounced in more diverse
networks.
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The negative consequences of adding random links to a network are even more
acute in the presence of greater diversity.

4 Conclusion

Previous studies have found that the addition of random ties unambiguously im-
proves information dissemination. Additional random ties generate a “jump ef-
fect,” allowing information to jump from region to region within networks, speed-
ing the spread of information. However, the present work suggests that there is an
additional, at times competing effect that is masked when important features of
information-sharing in social networks are unaccounted for.

Ties in social networks represent potential opportunities for the spread of infor-
mation rather than certain conduits of information. People may be limited in the
number of encounters that would permit information-sharing, and people can de-
cide whether or not to share information with any candidate recipient when given
the opportunity. This paper builds these two features into a model of information
diffusion by assuming a uniform number of encounters per person and the presence
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of types such that people are more willing to share information with a same-type
than a different-type neighbor.

Accounting for these features reveals that a “composition effect” can result in
random ties impeding the spread of information. When random ties reduce the pro-
portion of same-type nodes in nodes’ neighborhoods, opportunities to share infor-
mation are more likely to arise with people of a different type. Since people are more
hesitant to share with different types, random ties can impede overall information
dissemination.

Note that the two effects can be on net negative, even when people are still willing
to share information with different type ties some of the time. In heterogeneous
groups, especially ones with high homophily, greater density can actually strictly
reduce the speed with which information spreads throughout a network.

In addition to revealing a potentially negative consequence of network density
in diverse groups, these results also help make sense of recent empirical findings in
the social sciences showing that group composition is directly related to both trust
[22] and the reach of novel information [14]. Areas that are heterogeneous in salient
types– for instance those that are ethnically diverse– fare poorly in outcomes that
require information to spread to coordinate outcomes like providing public goods
[17], keeping aspiring rebel groups’ secrets from the government[15], and enforcing
behavior through peer sanctions [13]. Heterogeneous groups may face difficulties
due to problems with information dissemination that homogeneous groups are able
to avoid.

References

1. Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance.
Science 341(6144) (2013)

2. Banerjee, A.V., Chandrasekhar, A., Duflo, E., Jackson, M.O.: Gossip: Identifying central in-
dividuals in a social network. Available at SSRN 2425379 (2014)

3. Centola, D.: The spread of behavior in an online social network experiment. science
329(5996), 1194–1197 (2010)

4. Centola, D., Macy, M.: Complex contagions and the weakness of long ties. American journal
of Sociology 113(3), 702–734 (2007)

5. Centola, D.M.: Homophily, networks, and critical mass: Solving the start-up problem in large
group collective action. Rationality and society 25(1), 3–40 (2013)

6. Chiang, Y.S.: Birds of moderately different feathers: Bandwagon dynamics and the threshold
heterogeneity of network neighbors. Journal of Mathematical Sociology 31(1), 47–69 (2007)

7. Chwe, M.: Communication and Coordination in Social Networks. Review of Economic Stud-
ies 67(1), 1–16 (2000)

8. Dodds, P.S., Watts, D.J.: Universal behavior in a generalized model of contagion. Physical
review letters 92(21), 218,701 (2004)

9. Dodds, P.S., Watts, D.J.: A generalized model of social and biological contagion. Journal of
theoretical biology 232(4), 587–604 (2005)

10. Granovetter, M.: Threshold models of collective behavior. American journal of sociology pp.
1420–1443 (1978)

11. Jackson, M.O., Rogers, B.W.: Relating network structure to diffusion properties through
stochastic dominance. The BE Journal of Theoretical Economics 7(1) (2007)



10 Jennifer M. Larson

12. Kleinberg, J.: Small-world phenomena and the dynamics of information. Advances in neural
information processing systems 1, 431–438 (2002)

13. Larson, J.M.: Networks and interethnic cooperation. Journal of Politics Forthcoming (2017)
14. Larson, J.M., Lewis, J.I.: Ethnic networks. American Journal of Political Science Forthcom-

ing (2017)
15. Larson, J.M., Lewis, J.I.: Rumors, kinship networks, and rebel group formation. Working

Paper (2016)
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